2x^2-16+7=82

Simple and best practice solution for 2x^2-16+7=82 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-16+7=82 equation:



2x^2-16+7=82
We move all terms to the left:
2x^2-16+7-(82)=0
We add all the numbers together, and all the variables
2x^2-91=0
a = 2; b = 0; c = -91;
Δ = b2-4ac
Δ = 02-4·2·(-91)
Δ = 728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{728}=\sqrt{4*182}=\sqrt{4}*\sqrt{182}=2\sqrt{182}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{182}}{2*2}=\frac{0-2\sqrt{182}}{4} =-\frac{2\sqrt{182}}{4} =-\frac{\sqrt{182}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{182}}{2*2}=\frac{0+2\sqrt{182}}{4} =\frac{2\sqrt{182}}{4} =\frac{\sqrt{182}}{2} $

See similar equations:

| h+0.2=8 | | 1/6.2=x/15 | | 5x+5-6x=16 | | -7x+5+4x+13+8x=5x–17+14x+5 | | 4x+3-5x=22 | | 9t=t3 | | 2z-z+5z=18 | | 32+a=17 | | (7x+34)°=(9x+46)° | | -4(x^2+5x-135)=0 | | r/7=20 | | 7j+3j+j-6j=20 | | w/4=42/25 | | -2(w-12)=-14 | | x-3(-3x+15)=3 | | 8a=18a | | 14y+–13y+–19=8 | | 6.7=3x+1.3 | | 5x=-20x+53= | | 6/5d+10=13 | | 4m-8=13m | | -3(w-13)=-3 | | x+1.8=3.2 | | (n+4)3−1n+4n=2 | | M=7n-6 | | 4d=34 | | 2/5x-8=26 | | x-x-2=-2 | | 5(x-3)-3x=8x-6x | | y+54=800 | | 5/3x-9=22 | | -2(g-4)=-8 |

Equations solver categories